Table of Contents Previous Section Next Section

1.2 Scope of Parallel Computing

Parallel computing has made a tremendous impact on a variety of areas ranging from computational simulations for scientific and engineering applications to commercial applications in data mining and transaction processing. The cost benefits of parallelism coupled with the performance requirements of applications present compelling arguments in favor of parallel computing. We present a small sample of the diverse applications of parallel computing.

1.2.1 Applications in Engineering and Design

Parallel computing has traditionally been employed with great success in the design of airfoils (optimizing lift, drag, stability), internal combustion engines (optimizing charge distribution, burn), high-speed circuits (layouts for delays and capacitive and inductive effects), and structures (optimizing structural integrity, design parameters, cost, etc.), among others. More recently, design of microelectromechanical and nanoelectromechanical systems (MEMS and NEMS) has attracted significant attention. While most applications in engineering and design pose problems of multiple spatial and temporal scales and coupled physical phenomena, in the case of MEMS/NEMS design these problems are particularly acute. Here, we often deal with a mix of quantum phenomena, molecular dynamics, and stochastic and continuum models with physical processes such as conduction, convection, radiation, and structural mechanics, all in a single system. This presents formidable challenges for geometric modeling, mathematical modeling, and algorithm development, all in the context of parallel computers.

Other applications in engineering and design focus on optimization of a variety of processes. Parallel computers have been used to solve a variety of discrete and continuous optimization problems. Algorithms such as Simplex, Interior Point Method for linear optimization and Branch-and-bound, and Genetic programming for discrete optimization have been efficiently parallelized and are frequently used.

1.2.2 Scientific Applications

The past few years have seen a revolution in high performance scientific computing applications. The sequencing of the human genome by the International Human Genome Sequencing Consortium and Celera, Inc. has opened exciting new frontiers in bioinformatics. Functional and structural characterization of genes and proteins hold the promise of understanding and fundamentally influencing biological processes. Analyzing biological sequences with a view to developing new drugs and cures for diseases and medical conditions requires innovative algorithms as well as large-scale computational power. Indeed, some of the newest parallel computing technologies are targeted specifically towards applications in bioinformatics.

Advances in computational physics and chemistry have focused on understanding processes ranging in scale from quantum phenomena to macromolecular structures. These have resulted in design of new materials, understanding of chemical pathways, and more efficient processes. Applications in astrophysics have explored the evolution of galaxies, thermonuclear processes, and the analysis of extremely large datasets from telescopes. Weather modeling, mineral prospecting, flood prediction, etc., rely heavily on parallel computers and have very significant impact on day-to-day life.

Bioinformatics and astrophysics also present some of the most challenging problems with respect to analyzing extremely large datasets. Protein and gene databases (such as PDB, SwissProt, and ENTREZ and NDB) along with Sky Survey datasets (such as the Sloan Digital Sky Surveys) represent some of the largest scientific datasets. Effectively analyzing these datasets requires tremendous computational power and holds the key to significant scientific discoveries.

1.2.3 Commercial Applications

With the widespread use of the web and associated static and dynamic content, there is increasing emphasis on cost-effective servers capable of providing scalable performance. Parallel platforms ranging from multiprocessors to linux clusters are frequently used as web and database servers. For instance, on heavy volume days, large brokerage houses on Wall Street handle hundreds of thousands of simultaneous user sessions and millions of orders. Platforms such as IBMs SP supercomputers and Sun Ultra HPC servers power these business-critical sites. While not highly visible, some of the largest supercomputing networks are housed on Wall Street.

The availability of large-scale transaction data has also sparked considerable interest in data mining and analysis for optimizing business and marketing decisions. The sheer volume and geographically distributed nature of this data require the use of effective parallel algorithms for such problems as association rule mining, clustering, classification, and time-series analysis.

1.2.4 Applications in Computer Systems

As computer systems become more pervasive and computation spreads over the network, parallel processing issues become engrained into a variety of applications. In computer security, intrusion detection is an outstanding challenge. In the case of network intrusion detection, data is collected at distributed sites and must be analyzed rapidly for signaling intrusion. The infeasibility of collecting this data at a central location for analysis requires effective parallel and distributed algorithms. In the area of cryptography, some of the most spectacular applications of Internet-based parallel computing have focused on factoring extremely large integers.

Embedded systems increasingly rely on distributed control algorithms for accomplishing a variety of tasks. A modern automobile consists of tens of processors communicating to perform complex tasks for optimizing handling and performance. In such systems, traditional parallel and distributed algorithms for leader selection, maximal independent set, etc., are frequently used.

While parallel computing has traditionally confined itself to platforms with well behaved compute and network elements in which faults and errors do not play a significant role, there are valuable lessons that extend to computations on ad-hoc, mobile, or faulty environments.

    Table of Contents Previous Section Next Section