Table of Contents Previous Section Next Section


Since the 1994 release of the text "Introduction to Parallel Computing: Design and Analysis of Algorithms" by the same authors, the field of parallel computing has undergone significant changes. Whereas tightly coupled scalable message-passing platforms were the norm a decade ago, a significant portion of the current generation of platforms consists of inexpensive clusters of workstations, and multiprocessor workstations and servers. Programming models for these platforms have also evolved over this time. Whereas most machines a decade back relied on custom APIs for messaging and loop-based parallelism, current models standardize these APIs across platforms. Message passing libraries such as PVM and MPI, thread libraries such as POSIX threads, and directive based models such as OpenMP are widely accepted as standards, and have been ported to a variety of platforms.

With respect to applications, fluid dynamics, structural mechanics, and signal processing formed dominant applications a decade back. These applications continue to challenge the current generation of parallel platforms. However, a variety of new applications have also become important. These include data-intensive applications such as transaction processing and information retrieval, data mining and analysis, and multimedia services. Applications in emerging areas of computational biology and nanotechnology pose tremendous challenges for algorithms and systems development. Changes in architectures, programming models, and applications are also being accompanied by changes in how parallel platforms are made available to the users in the form of grid-based services.

This evolution has a profound impact on the process of design, analysis, and implementation of parallel algorithms. Whereas the emphasis of parallel algorithm design a decade back was on precise mapping of tasks to specific topologies such as meshes and hypercubes, current emphasis is on programmability and portability, both from points of view of algorithm design and implementation. To this effect, where possible, this book employs an architecture independent view of the underlying platforms and designs algorithms for an abstract model. With respect to programming models, Message Passing Interface (MPI), POSIX threads, and OpenMP have been selected. The evolving application mix for parallel computing is also reflected in various examples in the book.

This book forms the basis for a single concentrated course on parallel computing or a two-part sequence. Some suggestions for such a two-part sequence are:

  1. Introduction to Parallel Computing: Chapters 1-6. This course would provide the basics of algorithm design and parallel programming.

  2. Design and Analysis of Parallel Algorithms: Chapters 2 and 3 followed by Chapters 8-12. This course would provide an in-depth coverage of design and analysis of various parallel algorithms.

The material in this book has been tested in Parallel Algorithms and Parallel Computing courses at the University of Minnesota and Purdue University. These courses are taken primarily by graduate students and senior-level undergraduate students in Computer Science. In addition, related courses in Scientific Computation, for which this material has also been tested, are taken by graduate students in science and engineering, who are interested in solving computationally intensive problems.

Most chapters of the book include (i) examples and illustrations; (ii) problems that supplement the text and test students' understanding of the material; and (iii) bibliographic remarks to aid researchers and students interested in learning more about related and advanced topics. The comprehensive subject index helps the reader locate terms they might be interested in. The page number on which a term is defined is highlighted in boldface in the index. Furthermore, the term itself appears in bold italics where it is defined. The sections that deal with relatively complex material are preceded by a '*'. An instructors' manual containing slides of the figures and solutions to selected problems is also available from the publisher (

As with our previous book, we view this book as a continually evolving resource. We thank all the readers who have kindly shared critiques, opinions, problems, code, and other information relating to our first book. It is our sincere hope that we can continue this interaction centered around this new book. We encourage readers to address communication relating to this book to All relevant reader input will be added to the information archived at the site with due credit to (and permission of) the sender(s). An on-line errata of the book will also be maintained at the site. We believe that in a highly dynamic field such as ours, a lot is to be gained from a healthy exchange of ideas and material in this manner.

    Table of Contents Previous Section Next Section